PilihanKue Kering Terlengkap, Original, Harga Terbaik. Beli Kue Kering terbaik hanya di Tokopedia. Pilihan Kue Kering Terlengkap, Original, Harga Terbaik. Yogyakarta Buah Tangan Khas Jogja (15) Tambah ke Wishlist. Mini Cookies Ladang Lima. 9%. Rp17.000. Hampers, Parsel, dan Paket Makanan. Kue. Makanan Beku. Makanan Jadi. Makanan Kering 5 Pudding Sebuah pudding, baik itu pudding art atau puding buah, selain dijadikan kue hantaran sederhana, bisa dijadikan opsi alternatif pengganti kue ulang tahun yang unik dan murah, untuk seseorang yang sedang berbahagia di hari bertambahnya usia mereka. Adapun buah yang cocok dipadukan dengan pudding antara lain strawberry, anggur, atau bahkan apel. Keluargapak Arman menggunakan 4 buah lampu 25 watt yang dinyatakan selama 8 jam/hari. Duah buah televise 100 watt, dan 2 kipas angina 50 watt, yang dinyalakan 5 jam/hari. Biaya rekening listrik yang harus dibayar pak Arman setiap bulannya (30 hari), jika tariff listrik non subsidi sebesar Rp. 1.647/kwh adalah Hikmah Alamat: Jl. Sunan Kudus No.146, Pejaten, Langgardalem, Kec. Kota Kudus, Kabupaten Kudus, Jawa Tengah. Map: KlikDisini. Jam Buka: 07.00 - 19.30 WIB (Setiap Hari) No Telp: 0291 438 848. Toko Hikmah menawarkan berbagai macam roti, kue, dan aneka jajanan yang cocok untuk sajian saat rapat atau acara keluarga. Variannya banyak dan lengkap. Hargatiga buah spuit bintang no 1M 1F dan 2D dekorasi kue ulang tahun. Rp31.000. Harga Topper Cake Buah Persik Hiasan Kue Ulang Rp28.000. Harga tiga buah scraper ready warna merah dekorasi kue ulang tahun spuit. Rp19.000. Harga 5 Buah Kartun Putri Kue Ulang Tahun Puncak Dekorasi Kartun Putri Denga. Rp74.050. Harga Z New 3 Buah/Set Aksesori Bicarasoal jajanan pasar, rasanya tak lengkap tanpa membahas kue klepon. Kue berwarna hijau berisi gula merah bersalut kelapa ini memiliki rasa yang manis dan lumer di mulut. Walaupun ukurannya mungil, namun satu buah klepon ternyata mengandung 110 kalori, 2.8 gram lemak, 19.75 gram karbohidrat, dan 1.42 gram protein. Teksvideo. di sini ada pertanyaan tentukanlah harga sebuah kue A dan 2 buah kue B jika diketahui harga 5 buah kue A dan 2 buah kue b adalah Rp4.000 dan 2 buah kue A dan 3 buah kue b adalah rp2.700 untuk menyelesaikannya Kita akan menggunakan metode campuran untuk persamaan yang pertama kita akan Tuliskan model matematikanya buah kue A dan 2 buah kue B = Rp4.000 kita misalkan kue adalah A dan KueKu Buah. kentang kukus, haluskan β€’ pewarna merah cabai, hijau tua, oranye, ku ning tua, ungu, merah β€’ kacang hijau ku pas, rendam 1 jam β€’ tepung ketan β€’ gula tepung β€’ garam β€’ larutan kental manis (2 sdm kental manis + Air hangat β€’ gula pasir. 2 jam. 15 porsi. Ardhaniluvnabva. GarpuBuah KLIR WARNA Acak / Garpu Kue Ultah Plastik Kecil @100 Pcs. Rp3.325. Surabaya All Item Packaging. 5.0 60+ terjual. CTK01 Cake Topper Kertas Happy Birthday Glitter Hias Kue Tart Ultah. Rp2.380. memberikan energi positif bagi mereka yang merayakan dan yang hadir. Harga Kue Ultah. NilaiMaksimum dan Nilai Minimum. Butet membuat dua jenis kue. Setiap kue A memerlukan modal Rp2.000,00 dan dijual dengan mendapat keuntungan Rp1.000,00 per buah, sedangkan untuk kue memerlukan modal Rp3.000,00 dan dijual mendapat keuntungan Rp1.500,00 per buah. Modal yang tersedia Rp1.200.000,00 dan paling banyak hanya dapat membuat 500 kue Pertanyaan Asri membeli 3 buah roti A dan 5 buah roti B dengan harga Rp39.000,00. Sedangkan Barkah juga membeli 1 buah roti A dan 1 buah roti B dengan harga Rp11.000,00. Jika Cantik ingin membeli 4 buah roti A dan 2 buah roti B, maka jumlah uang yang harus ia bayar adalah Rp28.000,00. Liamembeli 2 buah kue a dan 3 buah kue b dengan harga Rp.14.000.sedamgkan meta membeli 3 buah kue a dan 4 buah kue b dgn harga Rp. 19.500. jika x dan y berturut-turut menyatakan harga 1 buah kue a dan 1 buah kue b ,maka matriks yang tepat untuk menyatakan harga masing-masing kue adalah. Halo, Melissa! Kakak bantu jawab ya. a Peti nomor 5 b. Peti nomor 1 c. Peti nomor 2 d. Peti nomor 3 e. Peti nomor 4 30. Jika semangka diletakkan dipeti nomor 5 dan jambu di nomor 6, dan melon di nomor 7, maka ada berapa kemungkinan pengaturan letak buah sesuai dengan aturan diatas ? a. 3 b. 5 c. 6 d. 4 e. Hanya 2 31. Jika jambu diletakkan di nomor 1. jeruk di nomor 2, maka DaftarHarga kotak kue basah Terbaru; September 2023; Harga Pamosroom Tempat Donat Box Plastik Kotak Makan Kue Bolu Basah. Rp13.800. Harga MIKA BOX 5A/MIKA BOX NASI KUE BASAH (100 PCS). Rp9.625. Harga (5pcs) Mika Mochi Box 4 White Box Kue Mochi Egg Tart Kue Basah Cookies. Rp22.000. Harga Plastik mika kue basah ukuran 7c isi 100pcs bening kecil / kotak bolu. Rp7.099. Harga Mika 1 GS / Mika kue 14Juni 2022 03:36. Seorang pedagang kue menjual dua jenis kue yaitu kue A dan kue B. Kue A dijual dengan harga Rp2.500,00 per buah dengan keuntungan Rp500,00 dan kue B dijual dengan harga Rp1.400,00 per buah dengan keuntungan Rp400,00. Modal yang dimiliki pedagang tersebut adalah Rp600.000,00 dan kapasitas tempat penjualan hanya menampung 500 O2I0S. β€œpembuat kue mempunyai” maka tanda yang digunakan adalah ≀. Penulisan model matematika untuk bahan gula yang dimiliki gula kue A + gula kue B ≀ gula seluruhnya 20x + 20y ≀ x + y ≀ 200 Penulisan model matematika untuk bahan tepung yang dimiliki tepung kue A + tepung kue B ≀ tepung seluruhnya 60x + 40y ≀ 3x + 2y ≀ 450 Tentukan titik-titik dari persamaan garis dan gunakan titik uji untuk mengetahui daerah penyelesaian 3x + 2y ≀ 450 x + y ≀ 200 0,225 dan 150,0 0,200 dan 200,0 Daerah himpunan penyelesaiannya adalah Titik potong ditentukan sebagai berikut Misalkan nilai x x + y = 200 x = 200 - y Substitusi nilai x 3x + 2y = 450 3200 - y + 2y = 450 600 - 3y + 2y = 450 y = 150 Setelah memperoleh nilai y, hitung nilai x x + y = 200 x + 150 = 200 x = 200 - 150 = 50 Titik potong 50 , 150. Substitusi titik-titik pada daerah penyelesaian Maka pendapatan maksimum yang diperoleh adalah Rp Soal LengkapHarga 5 buah kue A dan 2 buah kue B Sedangkan harga 2 buah kue A dan harga 3 buah kue B Jadi, harga sebuah kue A dan dua buah kue B adalah .... A. + 2y = + 3y = + 2y = ?PenyelesaianPertama, kita eliminasi x terlebih dahulu5x + 2y = x 2 10x + 4y = + 3y = x5 10x + 15y = = = = 500Kedua, substitusikan nilai y ke salah satu persamaan5x + = + = = – = = = 600HP = {600, 500}x + 2y = 600 + 600 + ADA DIPILIHAN BDetil JawabanMapel MatematikaKelas VIIIKata Kunci SPLDV, variabelKode [Bab 5 – Sistem Persamaan Linear Dua Variabel] Simak soal serupa - Pengertian - Pengertian - Perbedaan PLDV dengan SPLDV Mawamuhida32816 Mawamuhida32816 June 2019 1 45 Report Harga 5 buah kue A dan 2 buah kue B adalah Rp sedangkan harga 2 buah kue A dan harga 3 buah kue B adalah Rp Harga sebuah kue A dan 2 buah kue B adalah.... bebypurnamasarp4ta1a Lanjutan jadi harga sebuah kue A + 2 buah kue B = x +2y = 1818 + 21455 = 1818 + 2910 = 4728 = 4700 0 votes Thanks 1 More Questions From This User See All Mawamuhida32816 October 2019 0 Replies Pada pola ke 1 terdapat 2 lingkaran, pada pola ke 2 terdapat 6 lingkaran, pada pola ke 3 terdapat 12 lingkaran, pada pola ke 4 terdapat 20 lingkaran, pada pola ke 5 terdapat 30 lingkaran. Banyak lingkaran pada pola ke -10 adalah Answer Mawamuhida32816 June 2019 0 Replies Jarak sebenarnya antara kota A dan kota B adalah 360 km. Jika jarak antara kedua kota tersebut pada peta 24 cm, maka skala yang digunakan pada peta tersebut adalah..... Answer Mawamuhida32816 June 2019 0 Replies Bentuk sederhana dari -2ab - -3bc + 4ab - 3bc - 5ac adalah.... Answer Mawamuhida32816 June 2019 0 Replies Sorang petani mempunyai sebidang tanah terbentuk persegi panjang. Lebar tanah tersebut 6 m lebih pendek dari pada panjangnya. Jika keliling tanah 60 m. Luas tanah petani tersebut adalah.....m^2 Answer Mawamuhida32816 June 2019 0 Replies Dalam suatu gedung terdapat 30 kursi. Baris pertama dan setiap baris berikutnya memuai 4 kursi lebih banyak dari garis depannya. Bila dalam gedung itu terdapat 10 baris kursi. Tentukan a. Banyak kursi pada baris ke-10 U10 , b. Banyak kursi dalam gedung itu Answer Mawamuhida32816 June 2019 0 Replies Pada acara kuis "siapa berani" pertanyaan meja/lemari. Bahan yang dibuat kayu dari 30 peserta, kuis 18 orang menjawab meja, sisanya menjawab lemari semua peserta di tunjuk secara acak. a. Berapa peluang yang menjawab meja, b. Berapa peluang menjawab lemari. Answer Mawamuhida32816 June 2019 0 Replies Penghasilan pak Badi Rp di pakai - 55% untuk makan, - 15% untuk pakaian, - 10% untuk rumah, - 10% listrik & bahan bakar, - 5% disimpan di Bank. a. Buatlah diagram batang dan carilah masing-masing skornya, b. Tentukan besar masing-masing pengeluaran dalam Rp Answer Mawamuhida32816 June 2019 0 Replies Kubah sebuah tempat peribadatan berbentuk setengah bola dengan diameter 12 m. Kubah terbuat dari aluminium seharga Rp Hitunglah biaya pembuatan kubah tersebut! Answer Mawamuhida32816 June 2019 0 Replies Tiang bendera dan pohon berdiri tegak ditanah lapang, tinggi tiang bendera 12 m dan bayangannya 3 m. Jika bayangan pohon 1,5 m. Tentukan tinggi pohon ? Answer Mawamuhida32816 June 2019 0 Replies Andre membeli 20 ekor ayam dengan harga Rp240,000,00. Jika 3/5 dari jumlah ayam dijual dengan harga per ekor sedangkan sisanya dijual dengan harga per ekor, maka Andre akan mengalami... Answer Cara Menyelesaikan Sistem Persamaan Linear Dua Variabel SPLDV Bentuk Soal Cerita atau Pembahasan SPLDV Soal Cerita serta Contoh Soal dan Pembahasan. Untuk menyelesaikan SPLDV soal cerita dibutuhkan pemisalan sehingga membentuk model matematika dan penyederhanaan sehingga terbentuk persamaan linear dua variabel. Penyelesaian yang paling umum dilakukan adalah dengan cara eliminasi, substitusi atau eliminasi-substitusi. Perhatikan dan pelajari pembahasan sistem persamaan linear dua variabel SPLDV soal cerita yang berikut. Soal dan Pembahasan SPLDV Soal Cerita Soal nomor 1 Harga 5 pensil dan 2 buku sedangkan harga 3 pensil dan 4 buku Jika harga 1 pensil dinyatakan dengan a dan harga 1 buku dinyatakan dengan b, maka sistem persamaan linear dua variabel yang berkaitan dengan pernyataan di atas adalah . . . . A. 5a + 2b = dan 4a + 3b = B. 5a + 2b = dan 3a + 4b = C. 2a + 5b = dan 3a + 4b = D. 2a + 5b = dan 4a + 3b = [SPLDV Soal Cerita] Pembahasan Soal memisalkan bahwa harga 1 pensil adalah a dan harga 1 buku adalag b. Harga 5 pensil dan 2 buku bisa diubah kedalam model matematika menjadi 5a + 2b = Harga 3 pensil dan 4 buku bisa diubah ke dalam model matematika menjadi 3a + 4b = Dengan demikian SPLDV menjadi 5a + 2b = dan 3a + 4b = jawab B. Soal nomor 2 Umur ayah p tahun dan ayah 6 tahun lebih tua dari paman. Jika jumlah umur paman dan ayah 38 tahun, maka model matematika yang tepat adalah . . . . A. 2p + 6 = 38 B. 2p - 6 = 38 C. p + 6 = 38 D. p - 6 = 38 [SPLDV Soal Cerita] Pembahasan Misalkan umur ayah adalah A dan umur ayah adalah p tahun, model matematikanya adalah A = p. Misalkan umur paman adalah B dan ayah lebih tua 6 tahun dari paman. Artinya, umur ayah harus dikurang 6 tahun agar sama dengan umur paman, model matematikanya adalah B = p - 6. Jumlah umur paman dan ayah 38 tahun, model matematikanya adalah A + B = 38 p + p - 6 = 38 2p - 6 = 38 jawab B. Soal nomor 3 Perbandingan uang Andi dengan uang Budi adalah 3 2. Jika jumlah uang mereka maka uang Andi adalah . . . . A. B. C. D. [SPLDV Soal Cerita] Pembahasan Misalkan uang Andi adalah $x$ dan uang Budi adalah $y$. Perbandingan uang Andi dengan uang Budi 3 2, jika dibuat dalam bentuk model matematika menjadi $\dfrac{x}{y} = \dfrac32$ $x = \dfrac32y$ . . . . * Jumlah uang mereka adalah jika dibuat ke dalam bentuk model matematika menjadi $x + y = . . . . ** Masukkan persamaan * ke dalam persamaan **! $x + y = $\dfrac32y + y = $\dfrac52y = $\begin{align} y &= \dfrac52\\ &= \times \dfrac25\\ &= \end{align}$ Masukkan nilai $y = ke persamaan *! $\begin{align} x &= \dfrac32y\\ &= \dfrac32 \times &= \end{align}$ Uang Andi adalah jawab B. Soal nomor 4 Diketahui jumlah dua bilangan asli adalah 39, sedangkan selisihnya sama dengan 15. Hasil kali kedua bilangan asli tersebut adalah . . . . A. 324 B. 297 C. 270 D. 243 [SPLDV Soal Cerita] Pembahasan Misalkan kedua bilangan asli tersebut adalah $x$ dan $y$. Jumlah dua bilangan asli adalah 39, jika dibuat ke dalam bentuk model matematika menjadi $x + y = 39$ . . . . * Selisih kedua bilangan sama dengan 15, jika dibuat ke dalam bentuk model matematika menjadi $x - y = 15$ . . . . ** Eliminasi persamaan * dan **! $\underline{\ \ \ \begin{matrix} x + y = 39\\ x - y = 15 \end{matrix}_{\ \ \ +}}$ $2x = 54$ $x = 27$ Masukkan nilai $x = 27$ ke persamaan **! $x - y = 15$ $27 - y = 15$ $27 - 15 = y$ $12 = y$ $xy = = 324$ jawab A. Soal nomor 5 Sebuah pecahan bernilai $\dfrac45$. Jika pembilang dan penyebut masing-masing dikurangi 7 maka nilainya menjadi $\dfrac34$. Selisih pembilang dan penyebut pecahan tersebut adalah . . . . A. 5 B. 6 C. 7 D. 8 [SPLDV Soal Cerita] Pembahasan Misalkan pembilang dari pecahan tersebut adalah $x$ dan penyebutnya adalah $y$. $\dfrac xy = \dfrac45$ $x = \dfrac45y$ . . . . * Pembilang dan penyebut dikurangi 7 maka nilainya menjadi \dfrac34, model matematikanya adalah $\dfrac{x - 7}{y - 7} = \dfrac34$ β†’ lakukan kali silang! $4x - 7 = 3y - 7$ $4x - 28 = 3y - 21$ $4x - 3y = 28 - 21$ $4x - 3y = 7$ . . . . ** Masukkan persamaan * ke dalam persamaan **! $4x - 3y = 7$ $4.\dfrac45y - 3y = 7$ β†’ kalikan persamaan dengan 5. $16y - 15y = 35$ $y = 35$ Masukkan nilai $y = 35$ ke persamaan * $x = \dfrac45y$ $x = \ $x = 28$ $Selisih = 35 - 28 = 7$ jawab C. Soal nomor 6 Fitra membeli 3 buku dan 2 pensil seharga Prilly membeli 4 buku dan 3 pensil dengan harga Jika Ika membeli 2 buku dan 1 pensil, jumlah uang yang harus dibayarkan adalah . . . . A. B. C. D. [SPLDV Soal Cerita] Pembahasan Misalkan harga 1 buku adalah $x$ dan harga 1 pensil adalah $y$. Fitra membeli 3 buku dan 2 pensil seharga model matematikanya adalah $3x + 2y = . . . . * Prilly membeli 4 buku dan 3 pensil dengan harga model matematikanya adalah $4x + 3y = . . . . ** Eliminasi persamaan * dan **! $\left.\begin{matrix} 3x + 2y = 4x + 3y = \end{matrix}\ \right \left.\begin{matrix} \times 4\\ \times 3\end{matrix} \ \right$ $\underline{\ \ \ \begin{matrix} 12x + 8y = 12x + 9y = \end{matrix}_{\ \ \ -}}$ $-y = $y = Masukkan nilai $y = ke dalam persamaan * atau **, pilih persamaan yang paling enak untuk dipakai, misalnya kita pilih persamaan **. $4x + 3y = $4x + 3 \times = $4x + = $4x = - $4x = $x = Ika membeli 2 buku dan 1 pensil seharga . . . .? Model matematikanya adalah $\begin{align} H &= 2x + y\\ &= 2 \times + &= + &= \end{align}$ Jumlah uang yang harus dibayarkan adalah jawab C. Soal nomor 7 Seorang tukang parkir mendapat uang sebesar dari 3 buah mobil dan 5 buah motor, sedangkan dari 4 buah mobil dan 2 buah motor ia mendapatkan uang Jika terdapat 20 mobil dan 30 motor, banyak uang parkir yang ia peroleh adalah . . . . A. B. C. D. [SPLDV Soal Cerita] Pembahasan Misalkan biaya parkir sebuah mobil adalah $x$ dan biaya parkir sebuah motor adalah $y$. Dari 3 buah mobil dan 5 buah motor didapat model matematikanya adalah $3x + 5y = . . . . * Dari 4 buah mobil dan 2 buah motor didapat model matematikanya adalah $4x + 2y = . . . . ** Eliminasi persamaan * dan **! $\left.\begin{matrix} 3x + 5y = 4x + 2y = \end{matrix}\ \right \left.\begin{matrix} \times 4\\ \times 3\end{matrix} \ \right$ $\underline{\ \ \ \begin{matrix} 12x + 20y = 12x + 6y = \end{matrix}_{\ \ \ -}}$ $14y = $y = Masukkan nilai $y = ke dalam persamaan * atau **, kita pilih persamaan *. $3x + 5y = $3x + 5 \times = $3x + = $3x = - $3x = $x = Jika terdapat 20 mobil dan 30 motor, banyak uang parkir yang ia peroleh adalah . . . . Jika kita misalkan banyak uangnya adalah U, maka model matematikanya menjadi $\begin{align} U &= 20x + 30y\\ &= 20 \times + 30 \times &= + &= \end{align}$ Dengan demikian jumlah uang yang ia peroleh adalah jawab C. Soal nomor 8 Nada membeli kue untuk Natal. Harga satu kaleng kue nastar sama dengan 2 kali harga satu kaleng kue keju. Harga 3 kaleng kue nastar dan 2 kaleng kue keju Uang yang harus dibayarkan Nada untuk membeli 2 kaleng kue nastar dan 3 kaleng kue keju adalah . . . . A. B. C. D. [SPLDV Soal Cerita] Pembahasan Misalkan harga 1 kaleng kue nastar adalah $x$ dan harga 1 kaleng kue keju adalah $y$. Harga satu kaleng kue nastar sama dengan 2 kali harga satu kaleng kue keju, model matematikanya menjadi $x = 2y$ . . . . * Harga 3 kaleng kue nastar dan 2 kaleng kue keju model matematikanya menjadi $3x + 2y = . . . . ** Masukkan persamaan * ke dalam persamaan **! $3x + 2y = $ + 2y = $6y + 2y = $8y = $y = Masukkan nilai $y = ke dalam persamaan *! $\begin{align} x &= 2y\\ &= 2 \times &= \end{align}$ Harga 2 kaleng kue nastar dan 3 kaleng kue keju $\begin{align} H &= 2x + 3y\\ &= 2 \times + 3 \times &= + &= \end{align}$ Jadi, uang yang harus dibayarkan Nada adalah jawab B. Soal nomor 9 Butet 3 tahun lebih muda dari Ucok. Jika jumlah umur mereka 27 tahun maka 3 tahun yang akan datang perbandingan umur Butet dengan Ucok adalah . . . . A. 3 4 B. 4 5 C. 5 6 D. 6 7 [SPLDV Soal Cerita] Pembahasan Misalkan umur butet saat sekarang adalah $x$ dan umur Ucok adalah $y$. Butet 3 tahun lebih muda dari Ucok, artinya umur Butet harus ditambah 3 agar sama dengan umur Ucok atau umur Ucok harus dikurangi 3 agar sama dengan umur Butet. Model matematikanya menjadi $x + 3 = y$ . . . . *a atau $x = y - 3$ . . . . *b Jumlah umur mereka 27 tahun, model matematikanya $x + y = 27$ . . . . ** Masukkan persamaan *a atau persamaan *b ke dalam persamaan **, kita pilih persamaan *a. $x + y = 27$ $x + x + 3 = 27$ $2x + 3 = 27$ $2x = 27 - 3$ $2x = 24$ $x = 12$ Masukkan nilai $x = 12$ kedalam persamaan *a atau *b atau **, kita pilih persamaan *a. $x + 3 = y$ $12 + 3 = y$ $15 = y$ Dengan demikian umur Butet saat sekarang adalah 12 tahun dan umur Ucok saat sekarang adalah 15 tahun. Tiga tahun yang akan datang umur butet menjadi 12 + 3 = 15 tahun dan umur Ucok menjadi 15 + 3 = 18 tahun. Perbandingan umur mereka 3 tahun yang akan datang menjadi $\dfrac{15}{18} = \dfrac56 = 5 6$ jawab C. Soal nomor 10 Empat tahun yang lalu perbandingan umur Ariel dengan Sherly adalah 3 4, sedangkan dua tahun yang akan datang perbandingan umur mereka adalah 6 7. Jumlah umur mereka pada saat ini adalah . . . . A. 20 B. 21 C. 22 D. 23 [SPLDV Soal Cerita] Pembahasan Misalkan umur Ariel pada saat sekarang adalah $x$ dan umur Sherly pada saat sekarang adalah $y$. Empat tahun yang lalu perbandingan umur Ariel dengan Sherly adalah 3 4, model matematikanya menjadi $\dfrac{x - 4}{y - 4} = \dfrac34$ β†’ lakukan kali silang! $4x - 4 = 3y - 4$ $4x - 16 = 3y - 12$ $4x - 3y = 16 - 12$ $4x - 3y = 4$ . . . . * Dua tahun yang akan datang perbandingan umur mereka adalah 6 7, model matematikanya menjadi $\dfrac{x + 2}{y + 2} = \dfrac67$ β†’ lakukan kali silang! $7x + 2 = 6y + 2$ $7x + 14 = 6y + 12$ $7x - 6y = 12 - 14$ $7x - 6y = -2$ . . . . ** Eliminasi persamaan * dan **! $\left.\begin{matrix} 4x - 3y = 4\\ 7x - 6y = -2\ \end{matrix}\ \right \left.\begin{matrix} \times 2\\ \times 1\end{matrix} \ \right$ $\underline{\ \ \ \begin{matrix} 8x - 6y = 8\\ 7x - 6y = -2 \end{matrix}_{\ \ \ -}}$ $x = 10$ Masukkan nilai $x = 10$ ke dalam persamaan * atau **, ambil persamaan *. $4x - 3y = 4$ $ - 3y = 4$ $40 - 3y = 4$ $40 - 4 = 3y$ $36 = 3y$ $12 = y$ Dengan demikian umur Ariel saat ini adalah 10 tahun dan umur Sherly saat ini adalah 12 tahun. Jumlah umur mereka pada saat ini menjadi 10 + 12 = 22. jawab C. Soal nomor 11 Harga sebuah buku tulis lebih murah dari harga dua buah pulpen. Jika harga 3 buku tulis dan 4 pulpen sama dengan maka harga 1 buku tulis dan 1 pulpen adalah . . . . A. B. C. D. [SPLDV Soal Cerita] Pembahasan Misalkan harga satu buku tulis adalah $x$ dan harga satu pulpen adalah $y$. Harga sebuah buku tulis lebih murah dari harga 2 buah pulpen, artinya harga sebuah buku tulis harus ditambah agar harganya sama dengan harga 2 buah pulpen. Model matematikanya menjadi $x + = 2y$ $x = 2y - . . . . * Harga 3 buku tulis dan 4 pulpen sama dengan model matematikanya adalah $3x + 4y = . . . . ** Masukkan persamaan * ke dalam persamaan **! $3x + 4y = $32y - + 4y = $6y - + 4y = $10y = + $10y = $y = Masukkan nilai $y = ke persamaan *! $\begin{align} x &= 2y - &= 2 \times - &= - &= \end{align}$ Harga 1 buku tulis dan 1 pulpen $\begin{align} H &= x + y\\ &= + &= \end{align}$ Jadi, harga 1 buku tulis dan 1 pulpen adalah jawab D. Soal nomor 12 Luna hanya memiliki uang dalam bentuk pecahan dan Perbandingan antara banyak lembaran dengan banyak lembaran adalah 3 4. Setelah dihitung, jumlah uang Luna seluruhnya adalah Banyak lembaran uang Luna seluruhnya adalah . . . . A. 22 B. 18 C. 14 D. 12 [SPLDV Soal Cerita] Pembahasan Misalkan banyak lembaran pecahan adalah $x$ dan banyak lembaran adalah $y$. Perbandingan antara lembaran dengan lembaran adalah 3 4, model matematikanya menjadi $\dfrac xy = \dfrac34$ $x = \dfrac34y$ . . . . * Jumlah uang Luna seluruhnya adalah model matematikanya menjadi $x \times + y \times = β†’ bagi persamaan dengan ! $x + 2y = 22$ . . . . ** Masukkan persamaan * ke dalam persamaan **! $x + 2y = 22$ $\dfrac34y + 2y = 22$ β†’ kalikan persamaan dengan 4 ! $3y + 8y = 88$ $11y = 88$ $y = 8$ Masukkan nilai $y = 8$ ke dalam persamaan *! $\begin{align} x &= \dfrac34y\\ &= \ &= 6\\ \end{align}$ Dengan demikian, banyak lembaran uang adalah 6 dan banyak lembaran uang adalah 8. Jumlah lembaran uang seluruhnya menjadi 6 + 8 = 14. jawab C. Soal nomor 13 Rudy mencampur beras jenis A dengan beras jenis B dengan perbandingan 2 3. Beras campuran tersebut dijual dengan harga per kg. Jika hasil penjualan seluruh beras campuran adalah maka banyaknya beras jenis A dan jenis B yang terjual berturut-turut adalah . . . . A. 20 kg dan 30 kg B. 24 kg dan 56 kg C. 32 kg dan 48 kg D. 36 kg dan 44 kg [SPLDV Soal Cerita] Pembahasan Misalkan banyaknya beras jenis A adalah $x$ dan banyaknya beras jenis B adalah $y$. Perbandingan beras jenis A dengan beras jenis B adalah 2 3, model matematikanya menjadi $\dfrac xy = \dfrac23$ $x = \dfrac23y$ . . . . * Harga beras campuran adalah per kg dan hasil penjualan beras campuran seluruhnya adalah Berarti banyak beras campuran yang terjual adalah = 80 kg. Karena beras campuran terbuat dari beras jenis A dan beras jenis B, maka model matematikanya menjadi $x + y = 80$ . . . . ** Masukkan persamaan * ke dalam persamaan **! $x + y = 80$ $\dfrac23y + y = 80$ β†’ kalikan persamaan dengan 3 ! $2y + 3y = 240$ $5y = 240$ $y = 48$ Masukkan nilai $y = 48$ ke dalam persamaan *! $\begin{align} x &= \dfrac23y\\ &= \ &= 32 \end{align}$ Dengan demikian, banyak beras jenis A adalah 32 kg dan banyak beras jenis B adalah 48 kg. jawab C. Soal nomor 14 Sebuah persegi panjang memiliki panjang 2 cm lebih panjang dari 2 kali lebarnya. Jika keliling persegi panjang tersebut adalah 52 cm, maka luas persegi panjang tersebut adalah . . . . $A.\ 124\ cm^2$ $B.\ 132\ cm^2$ $C.\ 144\ cm^2$ $D.\ 156\ cm^2$ [SPLDV Soal Cerita] Pembahasan Misalkan panjang persegi panjang adalah $p$ dan lebar persegi panjang adalah $l$. Panjangnya 2 cm lebih panjang dari 2 kali lebar, artinya panjangnya harus dikurangi 2 cm agar sama panjang dengan 2 kali lebar. Model matematikanya menjadi $p - 2 = 2l$ $p = 2l + 2$ . . . . * Keliling persegi panjang 52 cm $K = 2p + 2l$ $52 = 2p + 2l$ β†’ bagi persamaan dengan 2 ! $26 = p + l$ . . . . ** Masukkan persamaan * ke dalam persamaan **! $26 = p + l$ $26 = 2l + 2 + l$ $26 = 3l + 2$ $26 - 2 = 3l$ $24 = 3l$ $8 = l$ Masukkan nilai $l = 8$ ke dalam persamaan *! $\begin{align} p &= 2l + 2\\ &= + 2\\ &= 16 + 2\\ &= 18\\ L &= pl\\ &= &= 144\ cm^2 \end{align}$ jawab C. Soal nomor 15 Dalam sebuah keluarga, setiap anak laki-laki mempunyai saudara laki-laki sebanyak saudara perempuannya, sedangkan setiap anak perempuan memiliki saudara perempuan sebanyak $\dfrac23$ saudara laki-lakinya. Banyak anak dalam keluarga tersebut adalah . . . . A. 12 B. 11 C. 10 D. 9 [SPLDV Soal Cerita] Pembahasan Misalkan jumlah laki-laki adalah $x$ dan jumlah perempuan adalah $y$. Setiap laki-laki mempunyai saudara laki-laki sebanyak $x - 1$ dikurangi diri sendiri dan saudara perempuan sebanyak $y$, sehingga $x - 1 = y$ . . . . * Setiap perempuan mempunyai saudara perempuan sebanyak $y - 1$ dikurangi diri sendiri dan saudara laki-laki sebanyak $x$, sehingga $y - 1 = \dfrac23x$ . . . . ** Masukkan persamaan * ke dalam persamaan **! $y - 1 = \dfrac23x$ $x - 1 - 1 = \dfrac23x$ $x - 2 = \dfrac23x$ β†’ kalikan persamaan dengan 3 ! $3x - 6 = 2x$ $3x - 2x = 6$ $x = 6$ Masukkan nilai $x = 6$ ke dalam persamaan *! $x - 1 = y$ $6 - 1 = y$ $5 = y$ $\begin{align} Jumlah\ anak &= x + y\\ &= 6 + 5\\ &= 11\\ \end{align}$ jawab B. Soal nomor 16 Andi dan Budi masing-masing mempunyai sejumlah uang. Jika Andi memberi kepada Budi maka uang Budi menjadi 2 kali uang Andi yang sisa. Tetapi jika Budi memberi kepada Andi, maka uang Andi menjadi 3 kali uang Budi yang sisa. Dengan demikian uang Andi sama dengan . . . . A. B. C. D. [SPLDV Soal Cerita] Pembahasan Misalkan banyak uang Andi adalah $x$ dan banyak uang Budi adalah $y$. Jika Andi memberi kepada Budi, maka sisa uang Andi menjadi $x - dan uang Budi menjadi $y + Uang Budi menjadi 2 kali uang Andi yang sisa. Model matematikanya menjadi $2x - = y + $2x - = y + $2x - = y$ . . . . * Jika Budi memberi kepada Andi, maka uang Andi menjadi $x + dan uang Budi menjadi sisa $y - Uang Andi menjadi 3 kali uang Budi yang sisa. Model matematikanya menjadi $x + = 3y - $x + = 3y - $x - 3y = . . . . ** Masukkan persamaan * ke dalam persamaan **! $x - 3y = $x - 32x - = $x - 6x + = $-5x + = $ + = 5x$ $ = 5x$ $ = x$ Jadi, uang Andi adalah jawab C. Soal nomor 17 Tabung A berisi 8 liter Alkohol dan 4 liter air dan tabung B berisi 4 liter alkohol dan 12 liter air. Dari dalam tiap tabung diambil larutan untuk membuat 4 liter larutan yang mengandung 50% alkohol. Banyaknya larutan yang harus diambil dari dalam tabung A adalah . . . . A. 1,2 liter B. 1,6 liter C. 2 liter D. 2,4 liter [SPLDV Soal Cerita] Pembahasan Alkohol dalam tabung A merupakan $\dfrac{8}{4 + 8} = \dfrac{8}{12} = \dfrac23$ bagian volume. Misalkan volume larutan yang diambil dari tabung A adalah $x$ liter, maka volume alkohol pada larutan tersebut adalah $\dfrac23x$ liter. Alkohol dalam tabung B merupakan $\dfrac{4}{4 + 12} = \dfrac{4}{16} = \dfrac14$ bagian volume. Misalkan volume larutan yang diambil dari tabung B adalah $y$ liter, maka volume alkohol pada larutan tersebut adalah $\dfrac14y$ liter. Larutan yang dibuat volumenya 4 liter dengan kadar alkohol 50%, artinya volume alkohol dalam larutan tersebut adalah $50\% \times 4 = 2$ liter. Volume larutan yang diambil dari tabung A dan tabung B untuk membuat 4 liter larutan, model matematikanya menjadi $x + y = 4$ $y = 4 - x$ . . . . * Volume alkohol yang diambil dari tabung A dan tabung B untuk membuat 2 liter alkohol, model matematikanya menjadi $\dfrac23x + \dfrac14y = 2$ β†’ kalikan persamaan dengan 12 KPK dari 3 dan 4! $8x + 3y = 24$ . . . . ** Masukkan persamaan * ke dalam persamaan **! $8x + 3y = 24$ $8x + 34 - x = 24$ $8x + 12 - 3x = 24$ $5x = 24 - 12$ $5x = 12$ $x = \dfrac{12}{5} = 2,4\ liter$. jawab D. Soal nomor 18 Untuk menempuh jarak 12 km, Budi memerlukan waktu 2 jam untuk mendayung mengikuti arus sebuah sungai. Ketika Budi kembali, ia harus mendayung selama 6 jam lamanya melawan arus sungai yang sama kondisi dan keadaannya. Jika kecepatan Budi dianggap konstan selama mendayung, maka kecepatan arus sungai adalah . . . . A. 3 km/jam B. 2,5 km/jam C. 2 km/jam D. 1,5 km/jam [SPLDV Soal Cerita] Pembahasan Misalkan kecepatan Budi mendayung adalah $V_b$ dan kecepatan arus sungai adalah $V_a$. Gerak mengikuti arus sungai $V_b + V_a.t_1 = S$ $V_b + V_a.2 = 12$ β†’ bagi persamaan dengan 2 ! $V_b + V_a = 6$ . . . . * Gerak melawan arus sungai $V_b - V_a.t_2 = S$ $V_b - V_a.6 = 12$ β†’ bagi persamaan dengan 6 ! $V_b - V_a = 2$ . . . . ** Eliminasi persamaan * dan **! $\underline{\ \ \ \begin{matrix} V_b + V_a = 6\\ V_b - V_a = 2 \end{matrix}_{\ \ \ -}}$ $2V_a = 4$ $V_a = 2\ km/jam$ jawab C. Soal nomor 19 Sepuluh tahun yang lalu umur Andro adalah 2 kali umur Bento, lima tahun yang akan datang umur Andro menjadi $\dfrac32$ kali umur Bento. Selisih umur Andro dengan Bento sekarang adalah . . . . tahun. A. 12 B. 13 C. 14 D. 15 [SPLDV Soal Cerita] Pembahasan Misalkan umur Andro sekarang adalah $x$ dan umur Bento sekarang adalah $y$. Sepuluh tahun yang lalu umur Andro adalah 2 kali umur Bento, model matematikanya menjadi $x - 10 = 2y - 10$ $x - 10 = 2y - 20$ $x = 2y - 20 + 10$ $x = 2y - 10$ . . . . * Lima tahun yang akan datang umur Andro menjadi $\dfrac32$ umur Bento, model matematikanya menjadi $x + 5 = \dfrac32y + 5$ β†’ kalikan persamaan dengan 2 ! $2x + 10 = 3y + 5$ $2x + 10 = 3y + 15$ $2x - 3y = 5$ . . . . ** Substitusikan persamaan * ke dalam persamaan **! $2x - 3y = 5$ $22y - 10 - 3y = 5$ $4y - 20 - 3y = 5$ $y = 25$ Masukkan nilai $y = 25$ ke dalam persamaan *! $\begin{align} x &= 2y - 10\\ &= - 10\\ &= 50 - 10\\ &= 40\\ \end{align}$ $Selisih = 40 - 25 = 15$. jawab D. Soal nomor 20 Didalam sebuah gedung pertunjukan terdapat 200 orang penonton. Harga tiket masuk adalah untuk anak-anak dan untuk remaja dan dewasa. Jika hasil penjualan tiket adalah maka banyak anak-anak yang ikut menonton dalam gedung pertunjukan tersebut adalah . . . . orang A. 100 B. 75 C. 50 D. 40 [SPLDV Soal Cerita] Pembahasan Misalkan jumlah anak-anak adalah $x$ dan jumlah remaja dan dewasa adalah $y$. Jumlah seluruh penonton ada 200 orang, model matematika $x + y = 200$ . . . . * Hasil penjualan tiket model matematika $x \times + y \times = β†’ bagi persamaan dengan ! $4x + 5y = 950$ . . . . ** Eliminasi persamaan * dan **! $\left.\begin{matrix}x + y = 200\\ 4x + 5y = 950\ \end{matrix}\ \right \left.\begin{matrix} \times 5\\ \times 1\end{matrix} \ \right$ $\underline{\ \ \ \begin{matrix} 5x + 5y = 4x + 5y = 950 \end{matrix}_{\ \ \ -}}$ $x = 50$ Dengan demikian, jumlah anak-anak yang ikut menonton adalah 50 orang. Jawab C. Demikianlah pembahasan SPLDV soal cerita, semoga bermanfaat. BACA JUGA 1. Menentukan HP SPLDV Dengan Metode Substitusi 2. Menentukan HP SPLDV Dengan Metode Eliminasi 3. Menentukan HP SPLDV Dengan Metode GrafikSHARE THIS POST

harga 5 buah kue a dan 2 buah kue b